Imaging tool could find early signs of arterial plaque
A brain imaging tool developed for neuroscience could have
unexpected benefits in research on another vital area of the body: the
heart.
A research team led by assistant professor has applied multiphoton microscopy to the study of atherosclerosis – the buildup of plaque in the walls of the arteries. This buildup is a major cause of heart disease and stroke.
A descendant of the revolutionary two-photon microscopy born nearly 30 years ago, the group’s work produced high-resolution images of the earliest evidence of plaque buildup – individual fat cells along the arterial wall – in mouse and human tissue samples.
“When you look at tissue under a microscope, there are a lot of indistinct features,” the researcher said. “But to have something that is this bright, that shows something very specifically related to the disease, is pretty exciting. We believe it has a fair amount of clinical potential because of that specificity.”
The team that produced high-resolution in vivo images of neurons firing deep inside the brain of a mouse. These startlingly clear images, using three-photon microscopy (3PM) developed in a lab, got the author thinking about other uses for the pioneering imaging technique.
One of the additional signals produced when using 3PM for imaging is third harmonic generation (THG), which detects the interface between materials that respond differently to light. Where most optical techniques require inserting a fluorescent dye molecule or protein – which absorbs laser light and then radiates it back out, usually changing the color – THG doesn’t require any dyes. It relies on the inherent properties of the structures being observed – for his work, fat deposits.
“Whenever you move to different optical mechanisms, there’s a chance that it might reveal some new biology,” she said. “And this is what we took advantage of. It was sort of a ‘good guess’ that things like fats will show up very strongly with third harmonic generation.”
THG revealed detailed morphological information of cellular and extracellular lipid deposits from mouse and human tissue samples that reflect the early stages of the development of atherosclerosis. And without the need to inject dyes or protein markers, the technique is well-suited to studying living tissue.
“This might actually open up a whole new way to look at these plaques, and enable us to study their fine structure and early development,” the author said. “And that could really lead to new predictive tools.”
The author sees clinical application of this technique as possible in the future, combined with existing endoscopic techniques such as ultrasound and optical coherence tomography. For now, she said, 3PM and THG can be powerful tools for research.
“Scientists are trying to understand the progression of diseases like heart failure and small strokes in the brain and the heart,” she said. “Atherosclerosis is a major component of that. And now we have a tool where we can watch and see these deposits form and interact with all the other cells.”
FOR CROCHET DESIGNS https://gscrochetdesigns.blogspot.com
A research team led by assistant professor has applied multiphoton microscopy to the study of atherosclerosis – the buildup of plaque in the walls of the arteries. This buildup is a major cause of heart disease and stroke.
A descendant of the revolutionary two-photon microscopy born nearly 30 years ago, the group’s work produced high-resolution images of the earliest evidence of plaque buildup – individual fat cells along the arterial wall – in mouse and human tissue samples.
“When you look at tissue under a microscope, there are a lot of indistinct features,” the researcher said. “But to have something that is this bright, that shows something very specifically related to the disease, is pretty exciting. We believe it has a fair amount of clinical potential because of that specificity.”
The team that produced high-resolution in vivo images of neurons firing deep inside the brain of a mouse. These startlingly clear images, using three-photon microscopy (3PM) developed in a lab, got the author thinking about other uses for the pioneering imaging technique.
One of the additional signals produced when using 3PM for imaging is third harmonic generation (THG), which detects the interface between materials that respond differently to light. Where most optical techniques require inserting a fluorescent dye molecule or protein – which absorbs laser light and then radiates it back out, usually changing the color – THG doesn’t require any dyes. It relies on the inherent properties of the structures being observed – for his work, fat deposits.
“Whenever you move to different optical mechanisms, there’s a chance that it might reveal some new biology,” she said. “And this is what we took advantage of. It was sort of a ‘good guess’ that things like fats will show up very strongly with third harmonic generation.”
THG revealed detailed morphological information of cellular and extracellular lipid deposits from mouse and human tissue samples that reflect the early stages of the development of atherosclerosis. And without the need to inject dyes or protein markers, the technique is well-suited to studying living tissue.
“This might actually open up a whole new way to look at these plaques, and enable us to study their fine structure and early development,” the author said. “And that could really lead to new predictive tools.”
The author sees clinical application of this technique as possible in the future, combined with existing endoscopic techniques such as ultrasound and optical coherence tomography. For now, she said, 3PM and THG can be powerful tools for research.
“Scientists are trying to understand the progression of diseases like heart failure and small strokes in the brain and the heart,” she said. “Atherosclerosis is a major component of that. And now we have a tool where we can watch and see these deposits form and interact with all the other cells.”
THIS IS ONLY FOR INFORMATION, ALWAYS CONSULT YOU PHYSICIAN BEFORE
HAVING ANY PARTICULAR FOOD/ MEDICATION/EXERCISE/OTHER REMEDIES.
PS-
THOSE INTERESTED IN
RECIPES ARE FREE TO VIEW MY BLOG-
https://gseasyrecipes.blogspot.com/
FOR INFO ABOUT KNEE
REPLACEMENT, YOU CAN VIEW MY BLOG-
https:// kneereplacement-stickclub.blogspot.com/
FOR CROCHET DESIGNS https://gscrochetdesigns.blogspot.com
Labels: 3rd harmonic generation (THG), atherosclerosis, heart diseases, imaging tool, indistinct features, individual fat cells, morphological formation, multiphoton microscopy, stroke
0 Comments:
Post a Comment
<< Home