A cancer drug may help treat human papillomavirus infections
Pre-clinical experiments by
researchers suggest the cancer drugs vorinostat, belinostat and
panobinostat might be repurposed to treat infections caused by human
papillomaviruses, or HPVs.
HPV infections caused an estimated 266,000 deaths from cervical
cancer worldwide in 2012, according to the World Health Organization.
Routine screening by Pap smears or HPV DNA tests has reduced death rates
in developed countries compared to less developed regions of the globe.
Still, an estimated 12,200 United States women are diagnosed with
cervical cancer each year.
Highly efficacious vaccines against HPV infection exist—including the recently approved Gardasil 9, which immunizes against nine genotypes of HPV known to cause cervical, vulvar, vaginal and anal cancers, and genital warts. But the vaccine needs to be given before a person becomes sexually active, since it has no therapeutic efficacy against existing HPV infections.
"Safe, effective and inexpensive therapeutic agents are urgently needed," said an assistant professor of Biochemistry and Molecular Genetics.
Epithelium of anogenital sites—the cervix, penis and anus—or epithelium of the mouth and throat are sites of HPV infection. But HPVs cannot be propagated in conventional cell culture, hampering the investigation into their pathogenic effects. The researcher has investigated HPV-host interactions for decades. They discovered that the productive program of HPV depends on differentiation of the epithelium into a full-thickness, squamous epithelium. Furthermore, HPV reactivates host DNA replication in these differentiated cells, such that the replication proteins and substrates become available to support viral DNA amplification.
A researcher re-produced a fully differentiated human squamous epithelium by culturing primary human keratinocytes at an air-media interphase for two to three weeks, a growth they call raft culture. In 2009, their lab developed a breakthrough model for a raft culture of HPV-18-infected primary human keratinocytes, allowing a robust amplification of HPV-18 DNA and production of infective viral progeny. This productive raft culture is an ideal model for preclinical investigation of potential anti-HPV agents.
The hypothesized that inhibitors of histone deacetylases, or HDACs, would inhibit HPV DNA amplification because of their known mechanism of disrupting chromosomal DNA replication. Chromosomal replication requires HDAC alterations of histone proteins, the proteins that act like spools that wind DNA to help package and condense chromosomes and the viral genome. Vorinostat inhibits many HDACs, so it might interrupt not only chromosomal replication but also viral DNA replication.
Using the HPV-18 model raft cultures, the researchers found that vorinostat effectively inhibited HPV-18 DNA amplification and virus production. Importantly, vorinostat also induced the programmed cell death called apoptosis in a fraction of the differentiated cells. Cell death could be attributable to DNA breakage when chromosomal DNA replication was interrupted. Similar results were obtained with two additional HDAC inhibitors, belinostat and panobinostat. In contrast, the differentiated cells of uninfected raft cultures, which do not replicate their DNA, were thus largely spared in the presence of the inhibitors.
The team also examined how vorinostat affected levels and functions of viral oncoproteins, and they described the mechanisms that led to programmed cell death in HPV-18-infected cultures. "On the basis of these detailed studies," the Prof. said, "we suggest that HDAC inhibitors are promising compounds for treating benign HPV infections, abrogating progeny production and hence interrupting infectious transmission."
The team also reported that vorinostat caused extensive cell death in raft cultures of dysplastic and cancer cell lines harboring HPV-16. HPV-16 and HPV-18 are the most prevalent, high-risk HPVs responsible for causing anogenital and oropharyngeal cancers. "But further investigation would be required to verify that these agents could also be useful in treating HPV associated dysplasias and cancers," the Prof. said.
Highly efficacious vaccines against HPV infection exist—including the recently approved Gardasil 9, which immunizes against nine genotypes of HPV known to cause cervical, vulvar, vaginal and anal cancers, and genital warts. But the vaccine needs to be given before a person becomes sexually active, since it has no therapeutic efficacy against existing HPV infections.
"Safe, effective and inexpensive therapeutic agents are urgently needed," said an assistant professor of Biochemistry and Molecular Genetics.
Epithelium of anogenital sites—the cervix, penis and anus—or epithelium of the mouth and throat are sites of HPV infection. But HPVs cannot be propagated in conventional cell culture, hampering the investigation into their pathogenic effects. The researcher has investigated HPV-host interactions for decades. They discovered that the productive program of HPV depends on differentiation of the epithelium into a full-thickness, squamous epithelium. Furthermore, HPV reactivates host DNA replication in these differentiated cells, such that the replication proteins and substrates become available to support viral DNA amplification.
A researcher re-produced a fully differentiated human squamous epithelium by culturing primary human keratinocytes at an air-media interphase for two to three weeks, a growth they call raft culture. In 2009, their lab developed a breakthrough model for a raft culture of HPV-18-infected primary human keratinocytes, allowing a robust amplification of HPV-18 DNA and production of infective viral progeny. This productive raft culture is an ideal model for preclinical investigation of potential anti-HPV agents.
The hypothesized that inhibitors of histone deacetylases, or HDACs, would inhibit HPV DNA amplification because of their known mechanism of disrupting chromosomal DNA replication. Chromosomal replication requires HDAC alterations of histone proteins, the proteins that act like spools that wind DNA to help package and condense chromosomes and the viral genome. Vorinostat inhibits many HDACs, so it might interrupt not only chromosomal replication but also viral DNA replication.
Using the HPV-18 model raft cultures, the researchers found that vorinostat effectively inhibited HPV-18 DNA amplification and virus production. Importantly, vorinostat also induced the programmed cell death called apoptosis in a fraction of the differentiated cells. Cell death could be attributable to DNA breakage when chromosomal DNA replication was interrupted. Similar results were obtained with two additional HDAC inhibitors, belinostat and panobinostat. In contrast, the differentiated cells of uninfected raft cultures, which do not replicate their DNA, were thus largely spared in the presence of the inhibitors.
The team also examined how vorinostat affected levels and functions of viral oncoproteins, and they described the mechanisms that led to programmed cell death in HPV-18-infected cultures. "On the basis of these detailed studies," the Prof. said, "we suggest that HDAC inhibitors are promising compounds for treating benign HPV infections, abrogating progeny production and hence interrupting infectious transmission."
The team also reported that vorinostat caused extensive cell death in raft cultures of dysplastic and cancer cell lines harboring HPV-16. HPV-16 and HPV-18 are the most prevalent, high-risk HPVs responsible for causing anogenital and oropharyngeal cancers. "But further investigation would be required to verify that these agents could also be useful in treating HPV associated dysplasias and cancers," the Prof. said.
THIS IS ONLY FOR INFORMATION, ALWAYS CONSULT YOU PHYSICIAN BEFORE HAVING ANY PARTICULAR FOOD/ MEDICATION/EXERCISE/OTHER REMEDIES. PS- THOSE INTERESTED IN RECIPES ARE FREE TO VIEW MY BLOG- https://gseasyrecipes.blogspot.com/ FOR INFO ABOUT KNEE REPLACEMENT, YOU CAN VIEW MY BLOG- https:// kneereplacement-stickclub.blogspot.com/ FOR CROCHET DESIGNS https://gscrochetdesigns.blogspot.com
Labels: Anal Cancer, anogenital sites, cancer drugs, cervical, epithelium, genital warts, geootypes, HPV DNA test, Human papillomavirus (HPV), immunizes, Pap smear, squamous, vaccines, vaginal, vorinostat, Vulva cancer
0 Comments:
Post a Comment
<< Home