World's tiniest hammer may help understand brain injuries
Researchers have created world's tiniest
hammer to precisely measure how force affects brain cells, an advance
that may pave the way for better treatments against traumatic brain
injuries and diseases like Alzheimer's.
Researchers at University of California, Santa Barbara in the US have built a tiny machine called microHammer.
"Mechanical forces have been shown to impact cells a lot," said Kimberly Turner from UC Santa Barbara.
Far from being isolated units of life, cells - stem cells in particular - take cues from their environment that, for example, direct them to differentiate into one type of cell or another, or to start healing processes.
However a major limitation to understanding the reactions of individual neural cells to forces has been the inability to reliably apply impact or pressure to them.
MicroHammer, a cellular-scale machine built to tap, strike, squeeze and poke individual neural progenitors elicits responses that will then be studied and recorded to add to a body of knowledge that can help unlock the mysteries of the brain.
Modelled after cell-sorting technology used typically for medical diagnostics and immunotherapies, the MicroHammer flows individual cells through and subjects each of them to one of a variety of physical forces.
"This project will enable precision measurements of the physical, chemical and biological changes that occur when cells are subjected to mechanical loading, ranging from small perturbations to high-force, high-speed impacts," said Megan Valentine from UC Santa Barbara.
"Our technology will provide significantly higher forces and faster impact cycles than have previously been possible, and by building these tools onto microfluidic devices, we can leverage a host of other on-chip diagnostics and imaging tools and can collect the cells after testing for longer-term studies," said Valentine.
With the new devices and methods, Valentine said, the researchers expect to gain fundamentally new insight into the causes and progress of brain injuries due to trauma.
The MicroHammer is currently undergoing the process of characterisation, whereby the types and magnitudes of forces it can apply are being measured and recorded in anticipation of the first set of neuron-smashing experiments.
The knowledge gained by these experiments could pave the way toward a better understanding of neural conditions such as Alzheimer's disease as well as traumatic brain injury.
It may also lead to better prevention of such injuries by elucidating, for instance, what types of forces affect the neural cells most so helmets can be designed to buffer them.
It will have broad applications beyond brain cell research and help researchers gain insight on how forces affect other cells and tissue types.
this is only for your information, kindly take the advice of your doctor for medicines, exercises and so on.
https://gscrochetdesigns. blogspot.com. one can see my crochet creations
https://gseasyrecipes. blogspot.com. feel free to view for easy, simple and healthy recipes
https://kneereplacement- stickclub.blogspot.com. for info on knee replacement
Researchers at University of California, Santa Barbara in the US have built a tiny machine called microHammer.
"Mechanical forces have been shown to impact cells a lot," said Kimberly Turner from UC Santa Barbara.
Far from being isolated units of life, cells - stem cells in particular - take cues from their environment that, for example, direct them to differentiate into one type of cell or another, or to start healing processes.
However a major limitation to understanding the reactions of individual neural cells to forces has been the inability to reliably apply impact or pressure to them.
MicroHammer, a cellular-scale machine built to tap, strike, squeeze and poke individual neural progenitors elicits responses that will then be studied and recorded to add to a body of knowledge that can help unlock the mysteries of the brain.
Modelled after cell-sorting technology used typically for medical diagnostics and immunotherapies, the MicroHammer flows individual cells through and subjects each of them to one of a variety of physical forces.
"This project will enable precision measurements of the physical, chemical and biological changes that occur when cells are subjected to mechanical loading, ranging from small perturbations to high-force, high-speed impacts," said Megan Valentine from UC Santa Barbara.
"Our technology will provide significantly higher forces and faster impact cycles than have previously been possible, and by building these tools onto microfluidic devices, we can leverage a host of other on-chip diagnostics and imaging tools and can collect the cells after testing for longer-term studies," said Valentine.
With the new devices and methods, Valentine said, the researchers expect to gain fundamentally new insight into the causes and progress of brain injuries due to trauma.
The MicroHammer is currently undergoing the process of characterisation, whereby the types and magnitudes of forces it can apply are being measured and recorded in anticipation of the first set of neuron-smashing experiments.
The knowledge gained by these experiments could pave the way toward a better understanding of neural conditions such as Alzheimer's disease as well as traumatic brain injury.
It may also lead to better prevention of such injuries by elucidating, for instance, what types of forces affect the neural cells most so helmets can be designed to buffer them.
It will have broad applications beyond brain cell research and help researchers gain insight on how forces affect other cells and tissue types.
this is only for your information, kindly take the advice of your doctor for medicines, exercises and so on.
https://gscrochetdesigns.
https://gseasyrecipes.
https://kneereplacement-
Labels: Alzheimer's, brain injuries, immunotherapies, mechanical forces, micro hammer, Stem cells, traumatic
0 Comments:
Post a Comment
<< Home