Suppressing protein may stem Alzheimer's disease process
Scientists have discovered a potential strategy for developing treatments to stem the disease process in Alzheimer's disease. It’s based on unclogging removal of toxic debris that accumulates in patients’ brains, by blocking activity of a little-known regulator protein called CD33.
They found over-expression of CD33 in support cells, called microglia, in post-mortem brains from patients who had late-onset Alzheimer's disease, the most common form of the illness. The more CD33 protein on the cell surface of microglia, the more beta-amyloid proteins and plaques — damaging debris — had accumulated in their brains. Moreover, the researchers discovered that brains of people who inherited a version of the CD33 gene that protected them from Alzheimer's conspicuously showed reduced amounts of CD33 on the surface of microglia and less beta-amyloid.
Brain levels of beta-amyloid and plaques were also markedly reduced in mice engineered to under-express or lack CD33. Microglia cells in these animals were more efficient at clearing out the debris, which the researchers traced to levels of CD33 on the cell surface.
Since increased CD33 activity in microglia impaired beta-amyloid clearance in late onset Alzheimer’s, researchers are now searching for agents that can cross the blood-brain barrier and block it.
Activity of a regulator protein called CD33 (green) clogs removal of brain-damaging debris, beta-amyloid protein (red), by support cells, microglia. Left: Microglia of normal control mice (A”) show more CD33 and less beta-amyloid than mice in which CD33 expression is experimentally knocked-out (B”). Right: Little beta-amyloid can be seen in microglia of a mouse line in which CD33 is over-expressed (C”), compared to microglia of mice in which CD33 is experimentally inactivated (D”). Evidence from post-mortem human brains indicates that CD33 is similarly overactive in Alzheimer’s disease, suggesting that a treatment that impedes it might help treat or prevent the disease. Source:Rudolph Tanzi, Ph.D. , of Massachusetts General Hospital and Harvard University
Labels: Alzheimer’s, barrier, beta amyloid, block, blood, Brain, CD33, microglia, plaques, protein, unclogging
0 Comments:
Post a Comment
<< Home