Scientists discover new technique that shows how cancer cells grow
Researchers have observed how stem cell mutations quietly arise and
spread throughout a widening field of the colon until they eventually
predominate and become malignant. Using an innovative modelling system
in mice, the researchers visually tagged colon cancer mutations
by causing stem cells to glow. Mutations found in colon cancer were
then visualised in the animals, illuminating a sort of
tournament-to-the-death underway in the intestine in which one or
another mutation prevailed over the others to become the driving force
of a malignancy.
Joshua Snyder, PhD, assistant professor in the Departments of Surgery and Cell Biology at Duke University, said: “This study provides new insight into the previously invisible process in which mutant precancerous stem cells spread throughout the colon and seed cancer.” The study was published in the journal of Nature Communications.
“Our technique sets a firm foundation for testing new therapies that interrupt this early, pre-malignant process. We hope to one day target and eliminate these stealth precancerous cells to prevent cancer,” Snyder said.
In this way, the researchers found key differences in how the intestinal habitats common to babies and adults grow pre-cancerous fields of mutant cells. At a critical period, new born babies are sensitive to the effects of mutations within intestinal stem cells.
This insidiously seeds large fields of premalignant mutated cells throughout the intestine — a process called field cancerization — that dramatically increases cancer risk. These fields of mutated cells can grow and spread for years without being detected by current screening technologies; often, they remain harmless, but under proper conditions, these can rapidly become cancerous later in adults.
The researchers also observed that some colon cancer mutations found in patients can lead to a striking increase in the fertility of the environment surrounding precancerous fields. Ultimately, this leads to the rapid spread of fields throughout the intestine, with lethal consequences. Certain common mutations that arise from external sources, such as an injury or an environmental exposure, could also disrupt the environment surrounding the stem cell and lead to the rapid growth and spread of precancerous fields.
These occurrences can be especially lethal in adults and occur much more rapidly than previously expected — as if dropping a match on a drought-stricken forest. “Field cancerisation has been suggested to be the defining event that initiates the process of cancer growth, including cancers of the breast, skin, and lung,” said Snyder.
“Our technique allows us to model how premalignant cells compete and expand within a field by simple fluorescent imaging, potentially leading to earlier diagnosis and treatment.”
Joshua Snyder, PhD, assistant professor in the Departments of Surgery and Cell Biology at Duke University, said: “This study provides new insight into the previously invisible process in which mutant precancerous stem cells spread throughout the colon and seed cancer.” The study was published in the journal of Nature Communications.
“Our technique sets a firm foundation for testing new therapies that interrupt this early, pre-malignant process. We hope to one day target and eliminate these stealth precancerous cells to prevent cancer,” Snyder said.
In this way, the researchers found key differences in how the intestinal habitats common to babies and adults grow pre-cancerous fields of mutant cells. At a critical period, new born babies are sensitive to the effects of mutations within intestinal stem cells.
This insidiously seeds large fields of premalignant mutated cells throughout the intestine — a process called field cancerization — that dramatically increases cancer risk. These fields of mutated cells can grow and spread for years without being detected by current screening technologies; often, they remain harmless, but under proper conditions, these can rapidly become cancerous later in adults.
The researchers also observed that some colon cancer mutations found in patients can lead to a striking increase in the fertility of the environment surrounding precancerous fields. Ultimately, this leads to the rapid spread of fields throughout the intestine, with lethal consequences. Certain common mutations that arise from external sources, such as an injury or an environmental exposure, could also disrupt the environment surrounding the stem cell and lead to the rapid growth and spread of precancerous fields.
These occurrences can be especially lethal in adults and occur much more rapidly than previously expected — as if dropping a match on a drought-stricken forest. “Field cancerisation has been suggested to be the defining event that initiates the process of cancer growth, including cancers of the breast, skin, and lung,” said Snyder.
“Our technique allows us to model how premalignant cells compete and expand within a field by simple fluorescent imaging, potentially leading to earlier diagnosis and treatment.”