'Virtual breast' to improve cancer detection
A computer-generated 3D 'virtual breast' software, that mimics the intricacy of the real organ, could improve cancer detection, scientists say.
Many medical professionals encourage women to get mammograms, even though the tests are imperfect at best: only a minority of suspicious mammograms actually lead to a cancer diagnosis, researchers said.
Researchers have used a different type of test, ultrasound elastography, to pinpoint possible tumours throughout the body, including in the breast.
"It uses imaging to measure the stiffness of tissue, and cancer tissues are stiff," said Jingfeng Jiang, a biomedical engineer at Michigan Technological University.
Those images can be breathtakingly clear: In one elastograme the tumour is as different from normal breast tissue as a yolk is from the white in a fried egg. However, not all images are that precise.
"Depending on who does the reading, the accuracy can vary from 95 per cent to 40 per cent," he said.
"Forty per cent is very bad - you get 50 per cent when you toss a coin. In part, the problem is that ultrasound elastography is a new modality, and people don't know much about it," said Jiang.
Ultrasound elastography could be an excellent screening tool for women who have suspicious mammograms, but only if the results are properly interpreted, researchers said.
Jiang, who helped develop ultrasound elastography when he was a postdoctoral researcher at the University of Wisconsin–Madison, reasoned that clinicians might improve their accuracy if they could practice more. So he and his colleagues set about to build a virtual breast.
Like a simulator used to train fledgling surgeons, their virtual breast - a 3D, computer-generated "phantom" - would let medical professionals practice in the safety of the lab.
It was developed using data from the Visible Human Project, which gathered thousands of cross-sectional photos from a female cadaver.
Thus, it mimics the intricacy of the real thing, incorporating a variety of tissue types and anatomical structures, such as ligaments and milk ducts.
Clinicians can practice looking for cancer by applying virtual ultrasound elastography to the virtual breast and then evaluating the resulting images.
Jiang hopes that eventually the lab software will be available to anyone who needs the training.
Labels: Breast cancer, detection, stiffness, tissues, virtual ultrasound elastography
0 Comments:
Post a Comment
<< Home